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1 Summary

• Multinomial data: dependent variable can attain m possible outcomes (yi ∈ {0, 1, . . . ,m− 1}).

• Ordered and unordered variables: variables with or without a natural ordering.

[ordered: e.g. education level, job category; unordered: e.g. means of transport]

• Ordered response model: a model where the categorical outcome yi is related to the latent variable

y∗i = x′iβ + ei, ei ∼ IID(0, 1)

by means of m− 1 unknown threshold values τ1 < · · · < τm−1 as follows

yi =


0 if −∞ < y∗i ≤ τ1,
j if τj < y∗i ≤ τj+1, j = 1, . . . ,m− 2,

m− 1 if τm−1 < y∗i <∞

(k +m− 2 parameters, no constant term in β which has k − 1 elements).

pij = P[yi = j]

= P[τj < y∗i ≤ τj+1]

= P[y∗i ≤ τj+1]− P[y∗i ≤ τj ]
= G(τj+1)−G(τj),

where τ0 = −∞ and τm =∞.

Depending on G(·), the distribution of ei, we have the ordered probit (G(·) = Φ(·)) or logit (G(·) = Λ(·))
model.

• Multinomial logit:

pij =
exp(x′iβj)∑m

h=1 exp(x′iβh)
=

exp(x′iβj)

1 +
∑m

h=2 exp(x′iβh)

⇒ individual-specific data.

• Conditional logit:

pij =
exp(x′iβ))∑m
h=1 exp(x′iβ)

⇒ alternative-specific data.

• Marginal effects of explanatory variables: (in multinomial logit model) all the parameters β1, . . . , βm−1
together determine the marginal effect of xi on the probability to choose the jth alternative. So the

sign of the parameter β
(j)
l cannot always be interpreted directly as the sign of the effect of the xl on the

probability to choose the jth alternative.
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• Odds ratio: the relative odds to choose between the alternatives j and h, given by (in multinomial logit):

P(yi = j|xi)
P(yi = h|xi)

= exp
(
x′i(β

(j) − β(h))
)
.

Then: (β
(j)
l − β

(h)
l ) > 0 indicates a positive effect of xli on P(yi = j|xi) relative to P(yi = h|xi).

• Utilities Model: A model where the observed dependent variable is assumed to be a function of utilities

experienced from alternative choices, U
(j)
i , j = 0, 1, . . . ,m. The observed choice depends on the difference

in the utilities.

[interpretation of binary logit/probit model alternative to the latent variables model]

• Multinomial logit: 3 categories case (for the jth variable):

• Standard extreme value distribution:

G(x) = exp(− exp(−x)), (CDF)

p(x) = exp(− exp(−x)− x). (PDF)

The difference between two independent variables with (standard) extreme value distribution has (stan-
dard) logistic distribution

[used in defining the binary logit model in terms of utilities]

2 Extra Topics

From the last week!

Check Tutorial Problems No. 1.

3 Lecture Problems

Ex. 3: ordered probit model versus binary probit model

Show that the ordered probit model (with two explanatory variables xi1 and xi2) with m = 2 alternatives is the
binary probit model with constant term β0 = −τ1, by showing that P(yi = 1|xi) is the same in both models.

In ordered probit model in case of 2 categories yi ∈ {0, 1} and two explanatory variables xi1 and xi2 we
consider a latent variable y∗i :

y∗i = β1xi1 + β2xi2 + ei,
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where ei ∼ N(0, 1), i.i.d. We observe the choice yi:

yi =

{
0 if −∞ < y∗i ≤ τ1,
1 if τ1 < y∗i ≤ ∞,

with threshold value τ1.

We have:

P(yi = 1|xi) = P(y∗i > τ1|xi)
= P(β1xi1 + β2xi2 + ei > τ1|xi)
= P(ei > τ1 − β1xi1 − β2xi2|xi)
(∗)
= P(ei < −τ1 + β1xi1 + β2xi2|xi)
(∗∗)
= P(ei ≤ −τ1 + β1xi1 + β2xi2|xi)
(∗∗∗)
= P(ei ≤ −τ1 + β1xi1 + β2xi2)

= Φ(−τ1 + β1xi1 + β2xi2),

where we used that the standard normal distribution of ei is (∗) symmetric around 0, (∗∗) continuous and
(∗ ∗ ∗) independent of xi, and where Φ(.) is the cumulative distribution function (CDF) of the standard normal
distribution.

Further, since yi = 0 or yi = 1 we have

P(yi = 0|xi) + P(yi = 1|xi) = 1,

so that

P(yi = 0|xi) = 1− P(yi = 1|xi)
= 1− Φ(−τ1 + β1xi1 + β2xi2)

= Φ(τ1 − β1xi1 − β2xi2).

In the binary probit model we have

P(yi = 1|xi) = Φ(β0 + β1xi1 + β2xi2),

P(yi = 0|xi) = 1− P(yi = 1|xi)
= 1− Φ(β0 + β1xi1 + β2xi2)

= Φ(−β0 − β1xi1 − β2xi2).

So, indeed P(yi = 1|xi) is the same in the binary probit model and in the ordered probit model with m = 2
alternatives (with −τ1 = β0).

Therefore: the ordered probit model reduces to the binary probit model if we have only m = 2 alternatives. I.e.
they have the same Bernoulli distribution for yi (conditionally upon xi).

Note: in a similar way it holds that the ordered logit model reduces to the binary logit model if we have only
m = 2 alternatives.

Ex. 4: ordered logit model – importance of the ordering

The EViews file bank employees exercise13.wf1 contains the data, where also two variables have been added:

• admin0 manage1 cust2 (where 0 = administrative, 1 = management, 2 = custodial), where the ordering
is done based on average value of malei per category;

• admin0 cust1 manage2 (where 0 = administrative, 1 = custodial, 2 = management), where the ordering
is done based on average value of salary per category.
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Estimate two ordered logit models using these series as dependent variable (and education and male as explana-
tory variables). Compare the AIC, SC and prediction quality with the model where the categories are ordered
with education (with dependent variable ORDERED JOB CATEGORY, which is used on the slides). Can you explain
the differences?

Notice that ORDERED JOB CATEGORY could be called ‘cust0 admin1 manage2’ (where 0 = custodial, 1 = admin-
istrative, 2 = management).

We have:

dependent variable AIC SC percentage
correctly
predicted

ORDERED JOB CATEGORY 0.829509 0.864624 85.232%
admin0 manage1 cust2 1.151120 1.186236 77.215%
admin0 cust1 manage2 1.051928 1.087044 84.810%

Note: The model with (0 = custodial, 1 = administrative, 2 = management) is the best: the lowest (best) AIC
and SC, and the highest (best) percentage correctly predicted.
Reason: education is the most important explanatory variable (more important than male), so it is best to
order the categories with education. A higher education increases the probability of going from category
0=custodial to 1=administrative, and it increases the probability of going from category 1=administrative to
2=management.

Note: The model with (where 0 = administrative, 1 = management, 2 = custodial) is the worst: the highest
(worst) AIC and SC, and the lowest (worst) percentage correctly predicted.
Reason: male is a relatively unimportant explanatory variable (less important than education), so it is not good
to order the categories with male. Here the estimated coefficient of education is ‘damaged’, because education
increases the probability of going from category 0=administrative to 1=management, but it decreases the
probability of going from category 1=management to 2=custodial.

Note: The model with (0 = administrative, 1 = custodial, 2 = management) is also bad: the AIC, SC and
percentage correctly predicted are bad (close to the worst model and much worse than the best model).
Reason: Here the estimated coefficient of education is again ‘damaged’, because education decreases the
probability of going from category 0=administrative to 1=custodial, but it increases the probability of going
from category 1=management to 2=custodial.

Note: Beforehand we could not say whether the model with (0 = administrative, 1 = management, 2 = custodial)
or the model with (0 = administrative, 1 = custodial, 2 = management) would be the worst. Both of these
models have a poor ordering of the categories (when looking at the effect of education on the probabilities of
being in the categories).

4 Problem on binary, ordered & multinomial logit models

Consider the binary logit model where

y∗i = β0 + β1xi1 + β2xi2 + ei,

where the ei (i = 1, 2, . . . , n) are i.i.d. errors that have the (standard) logistic distribution with cumulative
distribution function (CDF) given by

G(a) = P(ei ≤ a)

=
1

1 + exp(−a)
=

exp(a)

1 + exp(a)
,

and where the ei (i = 1, 2, . . . , n) are independent of xj1 and xj2 (j = 1, 2, . . . , n). Further,

yi =

{
1 if y∗i > 0,

0 if y∗i ≤ 0.
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(a) Derive the probability P(yi = 1|xi1, xi2) and the probability P(yi = 0|xi1, xi2).

P(yi = 1|xi) = P(y∗i > 0|xi)
= P(x′iβ + ei > 0|xi)
= P(ei > −x′iβ|xi)
(∗)
= P(ei < x′iβ|xi)
(∗∗)
= P(ei ≤ x′iβ|xi)
(∗∗∗)
= P(ei ≤ x′iβ)

= G(x′iβ)

=
1

1 + exp(−x′iβ)

=
exp(x′iβ)

1 + exp(x′iβ)
.

where we used that the standard logistic distribution of the error term ei is (∗) symmetric around 0, (∗∗)
continuous and (∗ ∗ ∗) independent of xi.

Further, yi is either 0 or 1, so that

P(yi = 0|xi1, xi2) + P(yi = 1|xi1, xi2) = 1,

so we have:

P(yi = 0|xi1, xi2) = 1−G(x′iβ) =
1

1 + exp(x′iβ)
.

(b) Derive the loglikelihood in this model.

The likelihood per observation i is the probability function of yi, conditionally upon xi:

p(yi|xi) = [G(x′iβ)]yi [1−G(x′iβ)]1−yi =

{
G(x′iβ) if yi = 1,

1−G(x′iβ) if yi = 0.

The likelihood is the joint probability function of the yi (i = 1, 2, . . . , n), conditionally upon the xi
(i = 1, 2, . . . , n):

L(β) = p(y1, . . . , yn|x1, . . . , xn)

(∗)
=

n∏
i=1

p(yi|xi)

=

n∏
i=1

[G(x′iβ)]yi [1−G(x′iβ)]1−yi ,

where in (∗) we used the assumption that the yi are independent (conditionally upon the xi). In other
words, we assume that the ei are independent. The loglikelihood is simply the (natural) logarithm of the
likelihood:

lnL(β) = ln p(y1, . . . , yn|x1, . . . , xn)

=

n∑
i=1

{
yi ln[G(x′iβ)] + (1− yi) ln[1−G(x′iβ)]

}
.

(c) Suppose that we analyse data on a presidential election, where there are two candidates, say C and T. We
observe n = 1000 observations. We have:

yi =

{
1 if person i votes for candidate C,

0 if person i votes for candidate T,

x2i = number of years of education of person i, x2i ∈ [12, 20],
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and

x3i =

{
1 if person i is a female,

0 if person i is a male.

Figure 1 contains ML estimation output and graphs of the estimated probability P̂(yi = 1|xi1, xi2).

Explain why the estimates of β1 and β2 match with the graphs of the estimated probability P̂(yi =
1|xi1, xi2).

Figure 1: Binary logit model: estimation output and graphs of the estimated probability P̂(yi = 1|xi1, xi2).

The estimated coefficients β̂1 (at education xi1) and β̂2 (at female xi2) are significantly positive, which

matches with the fact that P̂(yi = 1|xi1, xi2) is increasing with education and is higher for females than
for males.

(The graph for males is the graph for females shifted 0.91/0.17=5.35 to the right.)

(d) Now suppose there are three candidates, say C, T and B. We have:

yi =


0 if person i votes for candidate C,

1 if person i votes for candidate T,

2 if person i votes for candidate B.

Figures 2 and 3 contain ML estimation output and graphs of the estimated probabilities P̂(yi = 0|xi1, xi2),

P̂(yi = 1|xi1, xi2) and P̂(yi = 2|xi1, xi2) in the multinomial logit model (with reference category 0). Explain

why the estimates of the coefficients match with the graphs of the estimated probabilities P̂(yi = 0|xi1, xi2),

P̂(yi = 1|xi1, xi2) and P̂(yi = 2|xi1, xi2).

Figure 2: Multinomial logit model: estimation output.
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Figure 3: Multinomial logit model: graphs of the estimated probabilities P̂(yi = 0|xi1, xi2), P̂(yi = 1|xi1, xi2)

and P̂(yi = 2|xi1, xi2).

In this multinomial logit model we have probabilities:

P(yi = 0|xi) =
1

1 + exp(β
(1)
0 + β

(1)
1 xi1 + β

(1)
2 xi2) + exp(β

(2)
0 + β

(2)
1 xi1 + β

(2)
2 xi2)

,

P(yi = 1|xi) =
exp(β

(1)
0 + β

(1)
1 xi1 + β

(1)
2 xi2)

1 + exp(β
(1)
0 + β

(1)
1 xi1 + β

(1)
2 xi2) + exp(β

(2)
0 + β

(2)
1 xi1 + β

(2)
2 xi2)

,

P(yi = 2|xi) =
exp(β

(2)
0 + β

(2)
1 xi1 + β

(2)
2 xi2)

1 + exp(β
(1)
0 + β

(1)
1 xi1 + β

(1)
2 xi2) + exp(β

(2)
0 + β

(2)
1 xi1 + β

(2)
2 xi2)

.

Note: we have odds ratio

P(yi = 1|xi)
P(yi = 0|xi)

= exp(β
(1)
0 + β

(1)
1 xi1 + β

(1)
2 xi2),

so that

ln

(
P(yi = 1|xi)
P(yi = 0|xi)

)
= β

(1)
0 + β

(1)
1 xi1 + β

(1)
2 xi2.

Looking at the effect of education:

• Reference category 0 (voting C) has coefficient 0 (by definition).

• Category 1 (voting T) has significantly negative estimated coefficient C(2) = -0.12: an increase in
education decreases

P̂(yi = 1|xi1, xi2)

P̂(yi = 0|xi1, xi2)
.

• Category 2 (voting B) has significantly positive estimated coefficient C(5) = 0.82: an increase in
education increases

P̂(yi = 2|xi1, xi2)

P̂(yi = 0|xi1, xi2)
.

Hence, an increase in education increases P̂(yi = 2|xi1, xi2) (B) and decreases P̂(yi = 1|xi1, xi2) (T).

Looking at the effect of female (xi2 = 1 for female, xi2 = 0 for male):

• Reference category 0 (voting C) has coefficient 0 (by definition).

• Category 1 (voting T) has significantly negative estimated coefficient C(3) = -0.86:

P̂(yi = 1|xi1, xi2 = 1)

P̂(yi = 0|xi1, xi2 = 0)
< 1.

• Category 2 (voting B) has insignificant estimated coefficient C(6) = 0.19: we can not reject that

P̂(yi = 2|xi1, xi2 = 1)

P̂(yi = 0|xi1, xi2 = 0)
= 1.
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Hence,

• P̂(yi = 1|xi1, xi2) (T) is lower for females than for males.

• P̂(yi = 0|xi1, xi2) (C) and P̂(yi = 2|xi1, xi2) (B) are higher for females than for males.

(e) Could an ordered logit model be appropriate in this case? Motivate your answer.

No: the alternatives can not be ordered in such a way that the explanatory variables ‘push’ someone from
the first to the second alternative and from the second to the third alternative.

• education ‘pushes’ from T to C and from C to B;

• female ‘pushes’ from T to C but not (significantly) from C to B.

However, if we ignore the fact that the positive estimated effect of female on

P̂(yi = 2|xi1, xi2 = 1)

P̂(yi = 0|xi1, xi2 = 0)

is not significant, then yes: we can order the alternatives T, C, B, where both the variables education
and female ‘push’ persons from T to C and from C to B. In that case the ordered logit model could be
appropriate.

5 Computer Exercises

W17/C21

Use the data in loanapp.wf12 for this exercise; see also Computer Exercise C8 in Chapter 7.

(i) Estimate a probit model of approve on white. Find the estimated probability of loan approval for both
whites and nonwhites. How do these compare with the linear probability estimates?

As there is only one explanatory variable that takes on just two values, there are only two different
predicted values: the estimated probabilities of loan approval for white and nonwhite applicants. Rounded
to three decimal places these are:

P(approve = 1|white = 0) = Φ(β0 + β1 · 0) = Φ(0.547) = 0.708,

P(approve = 1|white = 1) = Φ(β0 + β1 · 1) = Φ(0.547 + 0.784) = 0.908,

for nonwhites and whites, respectively. Without rounding errors, these are identical to the fitted values
from the linear probability model. This must always be the case when the independent variables in
a binary response model are mutually exclusive and exhaustive binary variables. Then, the predicted
probabilities, whether we use the LPM, probit, or logit models, are simply the cell frequencies.

(In other words, 0.708 is the proportion of loans approved for nonwhites and 0.908 is the proportion
approved for whites.)

1From the previous week!
2N = 1989, cross-sectional individual data. These data were originally used in a famous study by researchers at the Boston

Federal Reserve Bank. See A. Munnell, G.M.B. Tootell, L.E. Browne, and J. McEneaney (1996), “Mortgage Lending in Boston:
Interpreting HMDA Data”, American Economic Review 86, 25–53.
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(ii) Now, add the variables hrat, obrat, loanprc, unem, male, married, dep, sch, cosign, chist, pubrec,
mortlat1, mortlat2, and vr to the probit model. Is there statistically significant evidence of discrimination
against nonwhites?

With the set of controls added, the probit estimate on white becomes about 0.520 with the standard error
of around 0.097. Therefore, there is still very strong evidence of discrimination against nonwhites.

[We can divide this by 2.5 to make it roughly comparable to the LPM estimate in part (iii) of Computer
Exercise C7.8: 0.520/2.5 ≈ 0.208, compared with 0.129 in the LPM. ]

(iii) Estimate the model from part (ii) by logit. Compare the coefficient on white to the probit estimate.

When we use logit instead of probit, the coefficient on white becomes 0.938 with the standard error of
0.173.

[Recall that to make probit and logit estimates roughly comparable, we can multiply the logit estimates
by 0.625. The scaled logit coefficient becomes: 0.625 · 0.938 ≈ 0.586, which is reasonably close to the
probit estimate of 0.520. A better comparison would be to compare the predicted probabilities by setting
the other controls at interesting values, such as their average values in the sample.]
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(iv) Use equation

n−1
n∑

i=1

{
G
[
β̂0 + β̂1xi1 + · · ·+ β̂k−1xik−1 + β̂k(ck + 1)

]
−G

[
β̂0 + β̂1xi1 + · · ·+ β̂k−1xik−1 + β̂kck

]}
(17.17)

to estimate the sizes of the discrimination effects for probit and logit.

Note that (17.17) is the average partial effect for a discrete explanatory variable. Unfortunately, it seems
there is no build-in function for this measure in EViews, so we need to calculate it ourselves using the
estimation results from the “augmented” probit and logit models. Figure 4 presents a code to carry out
such computations.

We consider all the variables but white. Instead, for each individual we consider two counterfactual
scenarios: as if he or she was white and otherwise (new generated variables white1 and white0), which
we use to create two groups (variables white1 and variables white0). Then, we use the coefficients
from two estimations (coef probit and coef logit) to sum all the variables multiplied by their respective
coefficient.

This gives us the arguments inside G(·) in (17.17). To evaluate G(·) we need to apply the appropriate
function for each model. For probit, it is Φ(z), the cdf of the standard normal distribution; for logit, it is

1
1+exp(−z) . Finally, we subtract the vector with G(·) applied to the sum under the “nonwhites scenario”

from that under the “whites scenario” and average out. The obtained values are APEprobit = 0.1042 and
APElogit = 0.1009, hence quite similar.
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Figure 4: EViews code for computing APE for probit and logit models, where we are interested in the effect of
being white or not on loan approval.
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