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1 Summary

e Multinomial data: dependent variable can attain m possible outcomes (y; € {0,1,...,m — 1}).

e Ordered and unordered variables: variables with or without a natural ordering.

[ordered: e.g. education level, job category; unordered: e.g. means of transport]

e Ordered response model: a model where the categorical outcome y; is related to the latent variable
y; = 2B+ ei, e; ~11D(0,1)
by means of m — 1 unknown threshold values 7, < --- < 7,,,_1 as follows

0 if—00<y;§717
Yi=9q17 ifry <y <7jp1,5=1,...,m—2,
m—1 ifr,; <y’ <oo

(k 4+ m — 2 parameters, no constant term in 8 which has k — 1 elements).

pij = Ply; = J]
= ]P)[Tj <y; < T]+1]
=Ply; <7j1] —Ply; < 7]
= G(1j+1) — G(75),
where 79 = —o0 and 7, = 0.
Depending on G(-), the distribution of e;, we have the ordered probit (G(-) = ®(+)) or logit (G(-) = A(+))
model.
e Multinomial logit:
o = - OP@iB) exp(z;f;)
Y hmexp(@ify) 1+ X, exp(@)Bh)
= individual-specific data.
e Conditional logit:
_exp(z;h))
Dij = =m 7 7o\
> he1 exp(z;f)
= alternative-specific data.
e Marginal effects of explanatory variables: (in multinomial logit model) all the parameters 81, . .., Bmn_1

together determine the marginal effect of x; on the probability to choose the jth alternative. So the

sign of the parameter Bl(j ) cannot always be interpreted directly as the sign of the effect of the x; on the
probability to choose the jth alternative.



e Odds ratio: the relative odds to choose between the alternatives j and h, given by (in multinomial logit):

P(y; = jlzs)

_ 103() _ g(h)
P(y; = hlz;) xp (Iz(ﬂ T8 ))

Then: ( l(j) - l(h)) > 0 indicates a positive effect of z;; on P(y; = j|z;) relative to P(y; = h|x;).

e Utilities Model: A model where the observed dependent variable is assumed to be a function of utilities
experienced from alternative choices, Ui(J ), j=0,1,...,m. The observed choice depends on the difference
in the utilities.

[interpretation of binary logit/probit model alternative to the latent variables model]

e Multinomial logit: 3 categories case (for the jth variable):

U® _ U(O)“ Person i: distrib. around
(27 W, &f B
[ ]
Y; =2
Yi=2 5;2)75;1) Wi=1
B(Q)T
J
| v U(OT
;=0 _ | Yi=1
By
e Standard extreme value distribution:
G(z) = exp(—exp(—x)), (CDF)
pla) = exp(—exp(—z) — ). (PDF)

The difference between two independent variables with (standard) extreme value distribution has (stan-
dard) logistic distribution

[used in defining the binary logit model in terms of utilities]

Extra Topics

From the last week!

Check Tutorial Problems No. 1.

3 Lecture Problems

Ex. 3: ordered probit model versus binary probit model

Show that the ordered probit model (with two explanatory variables x;1 and x;2) with m = 2 alternatives is the
binary probit model with constant term By = —71, by showing that P(y; = 1|x;) is the same in both models.

In ordered probit model in case of 2 categories y; € {0,1} and two explanatory variables z;; and z;2 we
consider a latent variable y;:

y; = P11 + Paxio + i,



where e; ~ N(0,1), i.i.d. We observe the choice y;:

_J0 if —oo <yl <7y,
YTV ifm <y < oo,

with threshold value 7.

We have:

P(y; = 1|x;) = P(y; > 11|zs)
P(Brzin + Boxio +€; > T1lx;)
IP(

e; > 11 — Pz — Paia|x;)

—
*
N>

Ple; < =71 + fizin + Baziolzi)
(%
=) Ple; < —m1 + frzin + Baziolzi)
() Pe; < —71 + frxin + Poxio)
= O(—7 + frzi1 + Paziz),

where we used that the standard normal distribution of e; is (%) symmetric around 0, (**) continuous and
(* % *) independent of x;, and where ®(.) is the cumulative distribution function (CDF) of the standard normal
distribution.

Further, since y; = 0 or y; = 1 we have
P(y; = Olx;) + P(y; = 1|z;) = 1,
so that
P(y; = 0lz;) = 1 — P(y; = 1|z;)
=1—0(—71 + Sz + Paxio)
= (I)(Tl — Bz — 52%‘2).
In the binary probit model we have
P(y; = 1|z;) = ®(Bo + Brzi1 + Paziz),
P(y; = 0lz;) = 1 — P(y; = 1|z;)

=1—-®(Bo + Brzi + Boxio)
= ®(—fo — frzi1 — Patia)-

So, indeed P(y; = 1|x;) is the same in the binary probit model and in the ordered probit model with m = 2
alternatives (with —m = So).

Therefore: the ordered probit model reduces to the binary probit model if we have only m = 2 alternatives. I.e.
they have the same Bernoulli distribution for y; (conditionally upon z;).

Note: in a similar way it holds that the ordered logit model reduces to the binary logit model if we have only
m = 2 alternatives.

Ex. 4: ordered logit model — importance of the ordering
The EViews file bank_employees_exzercisel3.wf1 contains the data, where also two variables have been added:

e adminO_managel_cust2 (where 0 = administrative, 1 = management, 2 = custodial), where the ordering
is done based on average value of male; per category;

e adminO_custi_manage2 (where 0 = administrative, 1 = custodial, 2 = management), where the ordering
is done based on average value of salary per category.



Estimate two ordered logit models using these series as dependent variable (and education and male as explana-
tory variables). Compare the AIC, SC and prediction quality with the model where the categories are ordered
with education (with dependent variable ORDERED_JOB_CATEGORY, which is used on the slides). Can you explain
the differences?

Notice that ORDERED_JOB_CATEGORY could be called ‘cust0_admini manage2’ (where 0 = custodial, 1 = admin-
istrative, 2 = management).

We have:

dependent variable AIC SC percentage
correctly

predicted

ORDERED_JOB_CATEGORY 0.829509 0.864624 85.232%
adminO managel cust2 1.151120 1.186236 77.215%
adminO_custl manage2 1.051928 1.087044 84.810%

Note: The model with (0 = custodial, 1 = administrative, 2 = management) is the best: the lowest (best) AIC
and SC, and the highest (best) percentage correctly predicted.

Reason: education is the most important explanatory variable (more important than male), so it is best to
order the categories with education. A higher education increases the probability of going from category
O=custodial to 1=administrative, and it increases the probability of going from category 1=administrative to
2=management.

Note: The model with (where 0 = administrative, 1 = management, 2 = custodial) is the worst: the highest
(worst) AIC and SC, and the lowest (worst) percentage correctly predicted.

Reason: male is a relatively unimportant explanatory variable (less important than education), so it is not good
to order the categories with male. Here the estimated coefficient of education is ‘damaged’, because education
increases the probability of going from category O=administrative to 1=management, but it decreases the
probability of going from category 1=management to 2=custodial.

Note: The model with (0 = administrative, 1 = custodial, 2 = management) is also bad: the AIC, SC and
percentage correctly predicted are bad (close to the worst model and much worse than the best model).
Reason: Here the estimated coefficient of education is again ‘damaged’, because education decreases the
probability of going from category 0=administrative to 1=custodial, but it increases the probability of going
from category 1=management to 2=custodial.

Note: Beforehand we could not say whether the model with (0 = administrative, 1 = management, 2 = custodial)
or the model with (0 = administrative, 1 = custodial, 2 = management) would be the worst. Both of these
models have a poor ordering of the categories (when looking at the effect of education on the probabilities of
being in the categories).

4 Problem on binary, ordered & multinomial logit models

Consider the binary logit model where

yi = Bo + Prxi + Poxia + €,

where the e; (i = 1,2,...,n) are i.i.d. errors that have the (standard) logistic distribution with cumulative
distribution function (CDF) given by
G(a) =P(e; < a)
B 1 _ exp(a)
~ 1+exp(—a) 1+exp(a)

and where the e; (1 =1,2,...,n) are independent of xj1 and xjo (7 =1,2,...,n). Further,

)1 iy >0,
“lo ifyr<o.



(a) Derive the probability P(y; = 1|1, xs2) and the probability P(y; = 0|zi1, Ti2).

P(y; = 1|x;)

P(y; > 0[x;)
P(z;8 + e; > 0|x;)
P(e; > —a;8|x;)

—
*
N>

Ple; < jf|a;)

) ple; < 2pl:)

=) Ble; < 41p)

= G(zip)

_ 1

~ 1+exp(—7,8)

_ exp(z}5)
1+ exp(ziB)’

—

where we used that the standard logistic distribution of the error term e; is (*) symmetric around 0, (*x)
continuous and (* % *) independent of x;.

Further, y; is either 0 or 1, so that
P(y; = O0[wi1, zi2) + Pys = 1|z, 24i2) = 1,

so we have:

1
P(y; = Olzi1, zi2) = 1 — G(2}8) = TF e @)

(b) Derive the loglikelihood in this model.

The likelihood per observation 7 is the probability function of y;, conditionally upon x;:

G(xiB3) ify; =1,

1MMO=WMWWU—QMWPMZL—G@® i 3 = 0.

The likelihood is the joint probability function of the y; (i = 1,2,...,n), conditionally upon the z;
(i=1,2,...,n):

L(ﬂ) :p(yla e ayn|$1; e axn)
*)

—~

o

p(yilz:)
1

= [[l6EEpn - Gipn—,

1

[
Sl

%

where in (x) we used the assumption that the y; are independent (conditionally upon the ;). In other
words, we assume that the e; are independent. The loglikelihood is simply the (natural) logarithm of the
likelihood:

InL(B) =lnp(yr,. ., yn|T1, .-, Tn)
= Z {3 n[G(}8)] + (1 — y;) In[1 — G(z}p)] }.

(c) Suppose that we analyse data on a presidential election, where there are two candidates, say C and T. We
observe n = 1000 observations. We have:

{1 if person i votes for candidate C,
Yi =

0 if person i votes for candidate T,

x9; = number of years of education of person i,xq; € [12,20],



and
1 if person i is a female,
T3i = . .
0 if person i is a male.
Figure 1 contains ML estimation output and graphs of the estimated probability I@)(yz = 1|x41, i2)-
Explain why the estimates of 81 and P2 match with the graphs of the estimated probability P(y; =
Ui, zi2).

= PR(Y=1|EDUCATION, FEMALE =1}

Dependent Variable: Y * PR({Y=1|EDUCATION, FEMALE =0}

Method: ML - Binary Logit (Quadratic hill climbing) 9

Sample: 11000
Included obsenvations: 1000
Convergence achieved after 4 iterations a4
Covariance matrix computed using second derivatives
Variable Coefficient Std. Error z-Statistic Prob 7
o -2472179 0.493827  -5.006160 0.0000
EDUCATION 0.171900 0.030299 5.673508 0.0000 54
FEMALE 0.914104 0.141307 6.468922 0.0000
McFadden R-squared 0.059675 Mean dependent var 0.671000 5
S.D. dependent var 0470085 SE. ofregression 0453222
Akaike info criterion 1.197331 Sum squared resid 204.7936
Schwarz criterion 1212055 Log likelihood -585 6657 4
Hannan-Quinn criter. 1.202927 Deviance 1191331 :
Restr. deviance 1266936 Restr log likelihood -633.4682
LR statistic 75.60489 Awvg. log likelihood -0.595666 a . . . . .
Prob(LR statistic) 0.000000 10 12 14 16 18 20 29
Obs with Dep=0 329 Totalobs 1000 EDUCATION
Obs with Dep=1 671

Figure 1: Binary logit model: estimation output and graphs of the estimated probability @(yi = 1|z, Ti2)-

(d)

The estimated coefficients Bl (at education z;1) and Bg (at female ;) are significantly positive, which
matches with the fact that P(y; = 1|1, 2;2) is increasing with education and is higher for females than
for males.

(The graph for males is the graph for females shifted 0.91/0.17=5.35 to the right.)

Now suppose there are three candidates, say C, T and B. We have:

0  if person i votes for candidate C,
yi =< 1 if person i votes for candidate T,

2 if person i votes for candidate B.

Figures 2 and 3 contain ML estimation output and graphs of the estimated probabilities I@’(yl = 0|xi1, Ti2),
P(y; = 1|21, ®i2) and P(y; = 2|41, 42) in the multinomial logit model (with reference category 0). Explain
why the estimates of the coefficients match with the graphs of the estimated probabilities P(y; = 0|z;1, zi2),

~

P(y; = 1|41, x42) and @(yz = 2|41, Ti2).

LogL: ML_MULTINOMIAL_LOGIT
Method: Maximum Likelihood (Marquardt)
Sample: 1 1000

Included observations: 1000

Evaluation order: By equation
Convergence achieved after 8 iterations

Coefficient Std. Error z-Statistic Prob.

FOR PROBABILITY OF VOTING T (VERSUS REFERENCE CATEGORY OF VOTING C)

C{1) (CONSTANT) 1.779986 0.519733 3424805 0.0006
C(2) (EDUCATION) -0.124617 0.032334  -3.854041 0.0001
C(3) (FEMALE) -0.863168 0.145194  -5.944921 0.0000
FOR PROBABILITY OF VOTING B (VERSUS REFERENCE CATEGORY OF VOTING C)

C{4) (CONSTANT) -16.29794 1.901439  -B8.571372 0.0000
C(5) (EDUCATION) 0.820380 0.102006 8.042430 0.0000
C(6) (FEMALE) 0.191768 0.232677 0.824182 0.4098
Log likelihood -805.0163 Akaike info criterion 1.622033
Avg. log likelihood -0.805016 Schwarz criterion 1.651479
Number of Coefs. 6 Hannan-Quinn criter. 1.633224

Figure 2: Multinomial logit model: estimation output.



EDUCATION, FEMALE = 1)

= PR({ 0 | EDUCATION, FEMALE = 1) @ PR(Y=1|EDUCATION, FEMALE =1) e PR({ |
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Figure 3: Multinomial logit model: graphs of the estimated probabilities I@)(y, = 0|zi1, 242), I@)(yl = 1|z, 242)
and ]P)(yz = 2\5@17%2).

In this multinomial logit model we have probabilities:

1

]P)(yz = O‘xl) = )
1+ exp(B + B zin + BV zin) + exp(BS) + BV win + B win)

Plu = 1lz.) — exp(B3) + B i + B i)
(yz - ‘xz) - ) ) ) ®) @) @) s
L+exp(By ' + By 'z + By "xin) +exp(By” + By zin + By xin)

(2) (2, (2),..
P(y; = 2|z;) = exp(By + By wi1 + By wiz)

1+ exp( (()1) + 5%1)%1 + /351)3%’2) + exp( 62) + ﬂ%z)xil + 552)3%’2).

Note: we have odds ratio

P i = 1 7
Plys = 1lz:) _ exp(B" + Bz + B wia),
so that P 1

_ M (1), 1y, ..
P(yi=0|$i)) = B0+ Birwa + By e

Looking at the effect of education:

e Reference category 0 (voting C) has coefficient 0 (by definition).

e Category 1 (voting T) has significantly negative estimated coefficient C(2) = -0.12: an increase in
education decreases

~

P(y; = 1|1, 242)

= .

P(y; = 0|1, z42)

e Category 2 (voting B) has significantly positive estimated coefficient C(5) = 0.82: an increase in
education increases

P(y; = 2|41, zi2)

P(y; = 0|z;1, zi2)

Hence, an increase in education increases P(y; = 2|z, 50) (B) and decreases P(y; = 1|x1, x42) (T).

Looking at the effect of female (x;2 = 1 for female, z;5 = 0 for male):

e Reference category 0 (voting C) has coefficient 0 (by definition).
e Category 1 (voting T) has significantly negative estimated coefficient C(3) = -0.86:

P(y; = 1]air, w2 = 1
A(y |1, 242 ) <1
P(y; = 0|1, 22 = 0)

e Category 2 (voting B) has insignificant estimated coefficient C(6) = 0.19: we can not reject that

P(y; = 2]z, 2 = 1)

IiD(:Ui = 0[z;1, 52 = 0)



Hence,

. I@’(y, = 1|@s1, 252) (T) is lower for females than for males.

o P(y; = 0|z, 242) (C) and ]IAD(yZ = 2|x;1, T;2) (B) are higher for females than for males.

(e) Could an ordered logit model be appropriate in this case? Motivate your answer.

No: the alternatives can not be ordered in such a way that the explanatory variables ‘push’ someone from
the first to the second alternative and from the second to the third alternative.

e education ‘pushes’ from T to C and from C to B;

e female ‘pushes’ from T to C but not (significantly) from C to B.

However, if we ignore the fact that the positive estimated effect of female on

@(yz = 2|51, 252 = 1)

P(y; = 0|1, z2 = 0)

is not significant, then yes: we can order the alternatives T, C, B, where both the variables education
and female ‘push’ persons from T to C and from C to B. In that case the ordered logit model could be
appropriate.

5 Computer Exercises

W17/C2!
Use the data in loanapp.wf1? for this exercise; see also Computer Exercise C8 in Chapter 7.

(i) Estimate a probit model of approve on white. Find the estimated probability of loan approval for both
whites and nonwhites. How do these compare with the linear probability estimates?

[Z) Equation: EQ)_PROBIT Workfile: LOANAPP:Loanapp\, = e e

[V\ew[ProclObjectl lPrmtINameIFreezel lEst\mate[FurecastIStatsIRes\dsl

Dependent Variable: APPROVE

Method: ML - Binary Probit (Newton-Raphson / Marquardt steps)
Sample (adjusted). 1 1988

Included observations: 1988 after adjustments

Convergence achieved after 3 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
c 0.546946 0.075435 7.250562 0.0000
WHITE 0783615 0.086714 9.036738 0.0000
McFadden R-squared 0.053274 Mean dependentvar 0877264
S.D. dependentvar 0.328217 S.E.ofregression 0.320172
Akaike info criterion 0707023 Sum squared resid 2035846
Schwarz criterion 0712652 Loglikelihood -700.7813
Hannan-Quinn criter. 0.709091 Deviance 1401.563
Restr. deviance 1480431 Restr. log likelihood -740.2157
LR statistic 78.86870 Awvg.log likelinood -0.352506
Prob(LR statistic) 0.000000
0Obs with Dep=0 244 Total obs 1988
Obs with Dep=1 1744

As there is only one explanatory variable that takes on just two values, there are only two different
predicted values: the estimated probabilities of loan approval for white and nonwhite applicants. Rounded
to three decimal places these are:

P(approve = 1jwhite = 0) = ®(By + F1 - 0) = ©(0.547) = 0.708,

P(approve = 1|white = 1) = ®(By + 1 - 1) = ©(0.547 + 0.784) = 0.908,
for nonwhites and whites, respectively. Without rounding errors, these are identical to the fitted values
from the linear probability model. This must always be the case when the independent variables in

a binary response model are mutually exclusive and exhaustive binary variables. Then, the predicted
probabilities, whether we use the LPM, probit, or logit models, are simply the cell frequencies.

(In other words, 0.708 is the proportion of loans approved for nonwhites and 0.908 is the proportion
approved for whites.)

LFrom the previous week!

2N = 1989, cross-sectional individual data. These data were originally used in a famous study by researchers at the Boston
Federal Reserve Bank. See A. Munnell, G.M.B. Tootell, L.E. Browne, and J. McEneaney (1996), “Mortgage Lending in Boston:
Interpreting HMDA Data”, American Economic Review 86, 25-53.



(i) Now, add the variables hrat, obrat, loanpre, unem, male, married, dep, sch, cosign, chist, pubrec,
mortlatl, mortlat2, and vr to the probit model. Is there statistically significant evidence of discrimination
against nonwhites?

[E] Equation: EQ PROEIT2 Workdile: LOANAPP:Loanapp\, [=a = ][=]
[view] proc| object [] Print [ 1ame | Freeze [ Estimate [Forecast  stats | Resias |
Dependent Variable: APPROVE
Method: ML - Binary Probit (Newton-Raphson / Marquardt steps)
Sample (adjusted) 1 1988
Included observations: 1971 after adjustments
Convergence achieved after 3 iterations
Coefficient covariance computed using observed Hessian
Variable Coeflicient Std. Error z-Statistic Prob.
c 2.062327 0.313176 6.585194 0.0000
WHITE 0.520253 0.096959 5.365707 0.0000
HRAT 0.007876 0.006962 1131394 02579
OBRAT -0.027692 0.006049  -4577783 0.0000
LOANPRC -1.011969 0.237240  -4.265600 0.0000
UNEM -0.036885 0.017481  -2.098594 0.0359
MALE -0.027001 0.100927  -0.336599 0.7364
MARRIED 0.265747 0.094252 21819528 0.0048
DEP -0.049576 0.039057  -1.269304 0.2043
SCH 0.014650 0.095842 0.152851 0.8785
COSIGN 0.086071 0.245751 0.350238 0.7262
CHIST 0.585281 0.095971 6.098491 0.0000
PUBREC -0.778741 0126320 -6.164823 0.0000
MORTLAT1 -0.187624 0.252112 0741265 0.4585
MORTLAT2 -0.484356 0.326556  -1513847 0.1301
VR -0.201082 0.081492  -2.467220 0.0136
McFadden R-squared 0.186602 Mean dependentvar 0.876205
8.0 dependentvar 0329431 SE ofregression 0299475
Akaike info criterion 0.625338 Sum squared resid 175.3347
Schwarz criterion 0.670686 Loglikelihood -600.2710
Hannan-Quinn criter. 0642002 Deviance 1200542
Restr. deviance 1475.959 Restr. log likelihood -737.9793
LR statistic 2754167 Avg. log likelihood -0.304551
Prob(LR statistic) 0.000000
Obs with Dep=0 244 Total obs 1971
Obs with Dep=1 1727

With the set of controls added, the probit estimate on white becomes about 0.520 with the standard error
of around 0.097. Therefore, there is still very strong evidence of discrimination against nonwhites.

[We can divide this by 2.5 to make it roughly comparable to the LPM estimate in part (i) of Computer
Exercise C7.8: 0.520/2.5 =~ 0.208, compared with 0.129 in the LPM. |

(iti) Estimate the model from part (ii) by logit. Compare the coefficient on white to the probit estimate.

[=] Equation: EQ_LOGIT2 Workfile: LOAMAPP:Loanapph E@

[view] proc| abject [ Print [ Name | Freeze || Estimate | Farecast  stats | Resids

Dependent Variable: APPROVE

Method: ML - Binary Logit (Newton-Raphson / Marquardt steps)
Sample (adjusted): 1 1988

Included cbservations: 1971 after adjustments

Convergence achieved after 4 iterations

Coefficient covariance computed using observed Hessian

Wariable Coeflicient Std. Error z-Statistic Prob

c 3.801710 0.594707 6.392572 0.0000

WHITE 0937764 0.172904 5.423603 0.0000

HRAT 0.013263 0.012880 1.029730 0.3031

OBRAT -0.053034 0.011280 -4701462 0.0000

LOANPRC -1.904951 0.460443 4137212 0.0000

UNEM -0.066579 0.0326809  -2.029310 0.0424

WMALE -0.066285 0.206429  -0.321588 0.7478

MARRIED 0503282 0.177998 2827452 0.0047

DEP -0.090734 0.073334 -1237261 0.2160

SCH 0.041229 0.178404 0.231098 08172

COSIGN 0.132059 0.446094 0.296034 07672

CHIET 1.066577 0171212 6.229570 0.0000

PUBREC -1.340865 0217366 -B.167781 0.0000

MORTLAT1 -0.309882 0.463520  -0.668541 0.5038

MORTLAT2 -0.894675 0568581 -1573522 0.1156

VR -0.340828 0183725  -2.278671 0.0229

McFadden R-squared 0.186297 MWean dependent var 0.876205

SD. dependent var 0329431 SE ofregression 0299487

Akaike info criterion 0.625567 Sum squared resid 175.3487

Schwarz criterion 0.670915 Log likelihood -600.4962

Hannan-Quinn criter 0.642230 Deviance 1200992

Resir. deviance 1475959 Restr. log likelinood -737.9793

LR statistic 2749664 Avg log likelihood -0.304666
Prob(LR statistic) 0.000000

Qbs with Dep=0 244 Total obs 1971
Obs with Dep=1 1727

When we use logit instead of probit, the coefficient on white becomes 0.938 with the standard error of
0.173.

[Recall that to make probit and logit estimates roughly comparable, we can multiply the logit estimates
by 0.625. The scaled logit coefficient becomes: 0.625 - 0.938 ~ 0.586, which is reasonably close to the
probit estimate of 0.520. A better comparison would be to compare the predicted probabilities by setting
the other controls at interesting values, such as their average values in the sample.]



(iv) Use equation
n~t Z {G[Bo + B+ Bro1@in—1 + Br(cr +1)] — G[Bo+ Brain + -+ + Br—1@in—1 + Brc] } (17.17)
i—1

to estimate the sizes of the discrimination effects for probit and logit.

Note that (17.17) is the average partial effect for a discrete explanatory variable. Unfortunately, it seems
there is no build-in function for this measure in EViews, so we need to calculate it ourselves using the
estimation results from the “augmented” probit and logit models. Figure 4 presents a code to carry out
such computations.

We consider all the variables but white. Instead, for each individual we consider two counterfactual
scenarios: as if he or she was white and otherwise (new generated variables whitel and white0), which
we use to create two groups (variables whitel and variables white0). Then, we use the coefficients
from two estimations (coef probit and coef_logit) to sum all the variables multiplied by their respective
coefficient.

This gives us the arguments inside G(-) in (17.17). To evaluate G(-) we need to apply the appropriate
function for each model. For probit, it is ®(z), the cdf of the standard normal distribution; for logit, it is
m. Finally, we subtract the vector with G(-) applied to the sum under the “nonwhites scenario”
from that under the “whites scenario” and average out. The obtained values are APEp,op;x = 0.1042 and

APE,4i: = 0.1009, hence quite similar.
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Program: LOANAPP - (hi\desktop'loanapp.prg) EI@
Printl Savel Savehs I Cutl Copy[ PasteIInserthtI Find I ReplaceIWrapﬂ-I LineNum+f—I Encrypt

bquation eq_probit binary(d=n) approve ¢ white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 vr
equation eq_logit binary(d=I} approve ¢ white hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 vr

vector{16) coef_probit
coef_probit = eq_probit. @coefs

vector(16) coef_logit
coef_logit= eq_logit @coefs

counterfactual scenarios
genr white1=1
genr whiteQ =0

all variables under counterfactual scenarios
group variables_white1 white1 hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 wr
group variables_white0 white0 hrat obrat loanprc unem male married dep sch cosign chist pubrec mortlat! mortlat2 wr

sum inside the G functions
series sum_white0_probit
series sum_white1_probit
series sum_white0_logit
series sum_white1_logit

start summing with the intercept (beta0)
sum_white0_probit = coef_probit(1)
sum_white1_probit = coef_probit(1)
sum_white0_logit = coef_logit(1)
sum_white1_logit = coef_logit(1)

add subsequentvariables multiplied by their coefficients
(there are more coefs because the one for the constant term is also there - hence li-1 for the grouped variables)
forli=21t0 16
series temp = coef_probitliy* variables_white0(li-1)
sum_white0_probit = sum_white0_probit + temp

series temp = coef_probit(liy* variables_white1(li-1)
sum_white1_probit = sum_white1_probit + temp

series temp = coef_logit(li)* variables_white0{li-1)
sum_white0_logit = sum_white0_logit +temp

series temp = coef_logit(li)* variables_white1{li-1)
sum_white1_logit = sum_white1_logit + temp
next

for probit: compute G as the cdf of the standard normal distribution
series G_white0_probit = @cnorm(sum_white0_probit )

series G_white1_probit = @cnorm(sum_white1_probit )

series diff_probit = G_white1_probit - G_white0_probit

scalar apf_probit = @mean(diff_probit )

for logit: compute G as the logistic function

series G_white0_logit = 1/(1+@exp(-sum_white0_logit))
series G_white1_logit = 1/{1+@exp(-sum_white1_logit))
series diff_logit = G_white1_logit - G_white0_logit
scalar apf_logit= @mean(difi_logit )

Figure 4: EViews code for computing APE for probit and logit models, where we are interested in the effect of
being white or not on loan approval.
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